All Issue

2024 Vol.51, Issue 2 Preview Page

Animal

1 June 2024. pp. 123-132
Abstract
References
1

AOAC (Association of Official Analytical Chemists). 2000. Official methods of analysis. 16th ed. AOAC, Washington, D.C., USA.

2

Arias VJ, Koutsos EA. 2006. Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poultry Science 85:999-1007.

10.1093/ps/85.6.99916776467
3

Bakalli RI, Pesti GM, Ragland WL, Konjufca V. 1995. Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens. Poultry Science 74:360-365.

10.3382/ps.07403607724460
4

Banks KM, Thompson KL, Jaynes P, Applegate TJ. 2004. The effects of copper on the efficacy of phytase, growth, and phosphorus retention in broiler chicks. Poultry Science 83:1335-1341.

10.1093/ps/83.8.133515339008
5

Barman TE. 1969. Catalase and peroxidase. Enzyme Handbook. Vol. 1. pp. 232-235. Springer-Verlag, Berlin, Germany.

6

Berntssen MH, Lundebye AK, Maage A. 1999. Effects of elevated dietary copper concentrations on growth, feed utilisation and nutritional status of Atlantic salmon (Salmo salar L.) fry. Aquaculture 174:167-181.

10.1016/S0044-8486(99)00015-0
7

Chiou PWS, Chen CL, Chen KL, Wu CP. 1999. Effect of high dietary copper on the morphology of gastro-intestinal tract in broiler chickens. Asian-Australasian Journal of Animal Science 12:548-553.

10.5713/ajas.1999.548
8

Close WH. 1998. The role of trace mineral proteinates in pig nutrition. Biotechnology in the Feed Industry 14:469-474.

9

Cresswell GC, Nair NG, Evans JC. 1990. Effect of boron and copper contaminants in poultry manure on the growth of the common mushroom, Agaricus bisporus. Australian Journal of Experimental Agriculture 30:707-712.

10.1071/EA9900707
10

Diplock AT, Charuleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Vina-Ribes J. 1998. Functional food science and defence against reactive oxidative species. British Journal of Nutrition 80:S77-112.

10.1079/BJN199801069849355
11

Fenton TW, Fenton M. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science 59:631-634.

10.4141/cjas79-081
12

Forouzandeh A, Blavi L, Abdelli N, Melo-Duran D, Vidal A, Rodríguez M, Monteiro ANTR, Pérez JF, Darwich L, Solà-Oriol D. 2021. Effects of dicopper oxide and copper sulfate on growth performance and gut microbiota in broilers. Poultry Science 100:101224.

10.1016/j.psj.2021.10122434157560PMC8237351
13

Gonzales-Eguia A, Fu CM, Lu FY, Lien TF. 2009. Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livestock Science 126:122-129.

10.1016/j.livsci.2009.06.009
14

Hamdi M, Solà D, Franco R, Durosoy S, Roméo A, Pérez JF. 2018. Including copper sulphate or dicopper oxide in the diet of broiler chickens affects performance and copper content in the liver. Animal Feed Science and Technology 237:89-97.

10.1016/j.anifeedsci.2018.01.014
15

Hu Y, Cheng H, Tao S. 2017. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environment International 107:111-130.

10.1016/j.envint.2017.07.00328719840
16

Konjufca VH, Pesti GM, Bakalli RI. 1997. Modulation of cholesterol levels in broiler meat by dietary garlic and copper. Poultry Science 76:1264-1271.

10.1093/ps/76.9.12649276889
17

Ledoux DR, Henry PR, Ammerman CB, Rao PV, Miles RD. 1991. Estimation of the relative bioavailability of inorganic copper sources for chicks using tissue uptake of copper. Journal of Animal Science 69:215-222.

10.2527/1991.691215x2005016
18

Li J, Yan L, Zheng X, Liu G, Zhang N, Wang Z. 2008. Effect of high dietary copper on weight gain and neuropeptide Y level in the hypothalamus of pigs. Journal of Trace Elements in Medicine and Biology 22:33-38.

10.1016/j.jtemb.2007.10.00318319138
19

Lu L, Hao S, Zhang L, Luo X. 2012. Effect of copper source on phytase stability in the premix of weanling piglets. Animal Production Science 53:142-145.

10.1071/AN12123
20

Lu L, Wang RL, Zhang ZJ, Steward FA, Luo X, Liu B. 2010. Effect of dietary supplementation with copper sulfate or tribasic copper chloride on the growth performance, liver copper concentrations of broilers fed in floor pens, and stabilities of vitamin E and phytase in feeds. Biological Trace Element Research 138:181-189.

10.1007/s12011-010-8623-320174978
21

Luo XG, Dove CR. 1996. Effect of dietary copper and fat on nutrient utilization, digestive enzyme activities, and tissue mineral levels in weanling pigs. Journal of Animal Science 74:1888-1896.

10.2527/1996.7481888x8856443
22

Luo XG, Ji F, Lin YX, Steward FA, Lu L, Liu B, Yu SX. 2005. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poultry Science 84:888-893.

10.1093/ps/84.6.88815971525
23

Mayer AN, Berwanger E, Vieira SL, Angel CR, Kindlein L, Ebbing MA, Lopes M. 2018. Copper requirements of broiler breeder hens. Poultry Science 97:2785-2797.

10.3382/ps/pex43729767800
24

Miles RD, O'keefe SF, Henry PR, Ammerman CB, Luo XG. 1998. The effect of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and dietary prooxidant activity. Poultry Science 77:416-425.

10.1093/ps/77.3.4169521454
25

Mills CF, Davis GK. 1987. Molybdenum. In Trace elements in human and animal nutrition. Edited by Mertz W. pp. 429-463. Academic Press, New York, USA.

10.1016/B978-0-08-092468-7.50017-X
26

Minervino AH, López-Alonso M, Barrêto Júnior RA, Rodrigues FA, Araújo CA, Sousa RS, Mori CS, Miranda M, Oliveira FL, Antonelli AC, et al. 2018. Dietary zinc supplementation to prevent chronic copper poisoning in sheep. Animals 8:227.

10.3390/ani812022730513571PMC6315410
27

NRC (National Research Council). 1994. Nutrient requirements of poultry. 9th rev. ed. National Academy Press, Washington, D.C., USA.

28

Olukosi OA, van Kuijk S, Han Y. 2018. Copper and zinc sources and levels of zinc inclusion influence growth performance, tissue trace mineral content, and carcass yield of broiler chickens. Poultry Science 97:3891-3898.

10.3382/ps/pey24729982614PMC6162356
29

Pang Y, Applegate TJ. 2006. Effects of copper source and concentration on in vitro phytate phosphorus hydrolysis by phytase. Journal of Agricultural and Food Chemistry 54:1792-1796.

10.1021/jf052053b16506835
30

Pang Y, Patterson JA, Applegate TJ. 2009. The influence of copper concentration and source on ileal microbiota. Poultry Science 88:586-592.

10.3382/ps.2008-0024319211529
31

Powell SR. 2000. The antioxidant properties of zinc. The Journal of nutrition 130:1447-1454.

10.1093/jn/130.5.1447S10801958
32

Richards JD, Zhao J, Harrell RJ, Atwell CA, Dibner JJ. 2010. Trace mineral nutrition in poultry and swine. Asian-Australasian Journal of Animal Sciences 23:1527-1534.

10.5713/ajas.2010.r.07
33

Samanta B, Biswas A, Ghosh PR. 2011. Effects of dietary copper supplementation on production performance and plasma biochemical parameters in broiler chickens. British Poultry Science 52:573-577.

10.1080/00071668.2011.60864922029784
34

Sarvestani SS, Resvani M, Zamiri MJ, Shekarforoush S, Atashi H, Mosleh N. 2016. The effect of nanocopper and mannan oligosaccharide supplementation on nutrient digestibility and performance in broiler chickens. Journal of Veterinary Research 71:153-161.

10.22059/JVR.2016.57912
35

SAS (Statistical Analysis System). 2014. SAS user's guide. SAS Institute Inc., Cary, NC, USA.

36

Singh P. 2016. Use of nano feed additives in livestock feeding. International Journal of Livestock Research 6:1-4.

10.5455/ijlr.20150816121040
37

Skrivan M, Sevcikova S, Tumova E, Skrivanova V, Marounek M. 2002. Effect of copper sulphate supplementation on performance of broiler chickens, cholesterol content and fatty acid profile of meat. Czech Journal of Animal Science 47:275-280.

38

Skrivan M, Skrivanova V, Marounek M, Tumova E, Wolf J. 2000. Influence of dietary fat source and copper supplementation on broiler performance, fatty acid profile of meat and depot fat, and on cholesterol content in meat. British Poultry Science 41:608-614.

10.1080/71365497811201441
39

Skrivanova V, Skrivan M, Marounek M, Baran M. 2001. Effect of feeding supplemental copper on performance, fatty acid profile and on cholesterol contents and oxidative stability of meat of rabbits. Archives of Animal Nutrition 54:329-339.

10.1080/1745039010938198911921855
40

Strain JJ. 1994. Newer aspects of micronutrients in chronic disease: Copper. Proceedings of the Nutrition Society 53:583-598.

10.1079/PNS199400677886057
41

Underwood EJ, Suttle NF. 1999. The mineral nutrition of livestock. 3rd edition. p. 614. CABI Publishing, Wallingford, UK.

10.1079/9780851991283.0000
42

Villagomez-Estrada S, Perez JF, Darwich L, Vidal A, van Kuijk S, Melo-Duran D, Sola-Oriol D. 2020. Effects of copper and zinc sources and inclusion levels of copper on weanling pig performance and intestinal microbiota. Journal of Animal Science 98:1-15.

10.1093/jas/skaa11732277238PMC7228679
43

Zhao Y, Wang D, Yang S. 2016. Effect of organic and conventional rearing system on the mineral content of pork. Meat Science 118:103-107.

10.1016/j.meatsci.2016.03.03027082991
Information
  • Publisher :Institute of Agricultural Science, Chungnam National University
  • Publisher(Ko) :충남대학교 농업과학연구소
  • Journal Title :Korean Journal of Agricultural Science
  • Journal Title(Ko) :농업과학연구
  • Volume : 51
  • No :2
  • Pages :123-132
  • Received Date : 2024-01-10
  • Revised Date : 2024-03-20
  • Accepted Date : 2024-03-31